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Abstract. Based on the Nagel-Schreckenberg (NaSch) model of traffic flow, a modified cellular automaton
(CA) traffic model with the density-dependent randomization (abbreviated as the DDR model) is proposed
to simulate traffic flow. The fundamental diagram obtained by simulation shows the ability of this modified
NaSch model to capture the essential features of traffic flow, e.g., synchronized flow, metastable state,
hysteresis and phase separation at higher densities. Comparisons are made between this DDR model and
the NaSch model, also between this DDR model and the VDR model. And the underlying mechanism is
analyzed. All these results indicate that the presented model is reasonable and more realistic.

PACS. 45.70.Vn Granular models of complex systems; traffic flow – 05.70.Ln Nonequilibrium and irre-
versible thermodynamics – 02.60.Cb Numerical simulation; solution of equations – 02.50.Fz Stochastic
analysis

Introduction

With the development of modern society, vehicular traf-
fic becomes more and more important in human life.
The transportation problems have attracted considerable
attention of statistical physicists [1–4] and have been
studied with various traffic models, such as cellular au-
tomaton (CA) models, car-following models, gas kinetic
models, and hydrodynamic models [5–9]. Through theo-
retical analysis and computer simulation with these mod-
els, people have gained deeper insight into the dynamical
characteristics of traffic systems and better understanding
of the complex phenomena observed in real traffic.

Compared with other traffic models, CA models are
conceptually simpler and can be easily implemented on
computers for numerical investigations. The related re-
search has been developed very quickly in the last decade
after the first realistic CA model was proposed in 1992 by
Nagel and Schreckenberg (the NaSch model, for short) [5].
The model deals with single-lane traffic flow of N cars
moving in a one-dimensional lattice of L cells under peri-
odic boundary conditions. The number of vehicles is fixed.
Each cell may either be empty or be occupied by one car.
Each car has an integral velocity between 0 and the speed
limit vmax. This speed limit may be different depending
on the kind of vehicles under consideration. Let vn and xn

denote the velocity and position of the nth vehicle at the
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time t respectively. And let dn be the current empty sites
in front of the nth vehicle, dn(t) = xn+1 − xn − 1. Then
the state of the system at the time t+1 could be obtained
from the state at the time t by applying the following set
of updating rules:
(1): Acceleration,

vn → min(vn + 1, vmax).

(2): Deterministic deceleration to avoid accidents,

vn → min(vn, dn).

(3): Randomization,

vn → max(vn − 1, 0) with the probability p.

(4): Update of positions,

xn(t + 1) → xn + vn.

With the above very simple rules, this model can be used
to reproduce the principal phenomena appearing in real
traffic, e.g., the phantom traffic jams. However, the max-
imum flow (i.e., the transit capacity) obtained by nu-
merical simulation with the NaSch model is much lower
than 2500 vehicles/(h*lane) which was given by measure-
ments in highway traffic [9]. Moreover, the metastable
state with two branches in the fundamental diagram has
not been given by the NaSch model. To improve the sit-
uation, a number of models have been proposed by in-
troducing the slow-to-start rules or considering the ef-
fects of successive vehicles, among which are the VDR
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model [10], the T 2 model [11], the BJH model [12],the
FVD model [13] and the XDYD model [14]. Another im-
proved CA model [15] considers the relationship between
deceleration probability and the density. The delay proba-
bility has been classified into three cases and two different
regions were presented, i.e., the coexistence state and the
jamming state [16]. Some of these models are able to repro-
duce the metastable state and exhibit a clear separation
of the congestion and free-flow regions in space-time pat-
terns. And the road capacity obtained by numerical simu-
lation approaches to the measured data more closely. Some
of these models involve a varying randomization probabil-
ity, while in the NaSch model, the value of randomization
probability is assumed to be constant. So the random-
ization probability plays an important role in describing
traffic dynamics.

However, there have been a few CA models which
could be used to simulate the synchronized flow. Recently
numerous empirical data of the highway traffic have been
obtained, which demonstrated the existence of three dis-
tinct dynamic phases: the free traffic flow, the synchro-
nized traffic flow and the traffic jam [17,18]. It has been
found empirically that the complexity in traffic flow is
linked to diverse space-time transitions between the three
basically different kinds of traffic.

Briefly speaking, there has been no traffic model yet
which can account for all aspects of vehicular traffic at
present. So a wide variety of CA models appeared which
described various types of traffic phenomena.

This paper presents a modified NaSch model with the
density-dependent randomization for traffic simulation.
The fact that the local density of vehicles has influence on
drivers’ behavior is taken into account. According to the
simulation results, we find that the presented model can
reproduce the complicated behavior of real traffic, such
as the phenomena of synchronized flow, metastable state,
hysteresis and phase separation at higher densities. The
fundamental diagram obtained by numerical simulation
shows that the capacity of the road approaches the em-
pirical data more closely compared with that by the NaSch
model.

The rest of the paper is organized as follows. A de-
scription of a modified NaSch model with the density-
dependent randomization is given in Section 2. In Section
3, simulation results in the forms of fundamental diagrams
and space-time patterns are presented and compared to
those with the NaSch model and the VDR model. Finally,
Section 4 contains concluding remarks and a summary of
findings.

Outline of the model

The value of randomization probability p in the NaSch
model is assumed to be constant. This means all vehicles
on the load have the same braking probability, which does
not correspond with real situation. In the VDR model, the
delay probabilities are considered as velocity-dependent.
Vehicles at the downstream tail of a jam start with re-
duced probability (slow-to-start) in order to model the

restarting process of a vehicle in a more realistic fashion.
But few models considered the influence of the density on
the randomization probability. In reality, the randomiza-
tion probability is not only affected by the vehicle velocity,
but also affected by the vehicle density. So we propose a
modified NaSch model in which a density-dependent ran-
domization probability pn = p(ρn) is introduced to replace
the constant p in the original model. This varying proba-
bility is assumed to have the following form:

pn = (ρn)r (1)

where, pn is the randomization probability of the nth
vehicle; ρn is the local vehicle density and expressed as
1/(dn+1), while dn has been defined above; r is a positive
exponent denoting the relationship between ρn and pn. As
the right hand of equation (1) is a power function and the
value of 1/(dn + 1) is between 0 and 1, then the value of
pn is also between 0 and 1. And this coincides with the
property of the randomization probability. Any number is
suitable for r in principle provided that it is greater than
zero. But here the values of r are set to be greater than 1
on account of the fact that the curve of the power function
appears a concave one as r ≥ 1. This means that when the
local density is small, i.e., the distances between succes-
sive vehicles are large, the corresponding randomization is
small according to the function, then pn increases slowly
with the increase of ρn in the middle region of [0, 1] and
increases drastically when ρn approaches 1. And this char-
acteristic reflects the real traffic behavior. Here r is set to
be from 1 to 10 in order to make the probability not too
large or too small.

The numerical simulation was performed according to
the above updating rules which are the same as those of
the NaSch model besides the modification of the random-
ization probability. A one-dimension lattice of L cells was
examined with periodic boundary conditions, and only one
kind of vehicles moving along one direction was consid-
ered. Each cell was set to be 7.5 m long and either empty
or occupied by just one vehicle. The value of vehicle veloc-
ity was between 0 and vmax(=5), where vmax was the same
for all vehicles. A system of length L = 1000 was studied,
which corresponded to the length of actual road around
7.5 km. One time step ∆t corresponded to 1s, which was
of the order of the reaction time for humans. Then, the
maximum velocity vmax = 5 corresponded to 135 km/h in
real traffic.

The computational formulas used in numerical simu-
lation are given as follows:

J = ρ · v (2)

where J is mean flow, ρ is global vehicle density, and v
is mean velocity. Then ρ and v can be expressed respec-
tively as

ρ = N/L, (3)

v =
1
T

T+t0−1∑

t=t0

1
N

N∑

n=1

vn(t), (4)
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Fig. 1. Fundamental diagrams obtained from the DDR model
(vmax = 5, L = 1 × 103) with different values of r and from
the NaSch model (vmax = 5, p = 0.25; L = 1×103) under the
same initial condition.

where N is the total vehicles distributed on the selected
road, vn(t) is the velocity of the nth vehicle at time t, and
T is selected time interval. In the numerical simulation,
the first 1 × 104 time-steps of each run were put away in
order to remove the transient effects, and then the data
were recorded in successive 1 × 104 time-steps. The mean
velocity was obtained by averaging over 30 runs.

Simulation results

First the fundamental diagrams of our proposed model
are presented in Figure 1 with different values of r which
is defined above. It is found that for 1 ≤ r ≤ 4.5 , the
curves show the similar reverse-lambda shape as that in
the VDR model and the maximum flow increases with the
increase of r. This is because that the probability decreases
with the increase of r. For r ≥ 7, the curves are different
in the following three regions and the maximum flow re-
mains constant. In the first region or low-density region,
the flow increases linearly with the increase of density. In
the second region the forms of the diagrams are signifi-
cantly different from that with 1 ≤ r ≤ 4.5 and the non-
trivial phenomenon is that the mean total flow J shows
only a slight decrease with the increasing of the density.
Then the flow drops abruptly and fluctuates around some
smaller values. In the third region, i.e., the high density
region, the traffic flow decreases linearly with the increase
of vehicle density.

Actually, as r ≥ 7, the randomization probability ap-
proaches the value of 0 and 1 according to the definition of
the probability. When the global density is small, the lo-
cal density is also small and probability is almost 0. Then
vehicles travel at desirable speed in free flow phase. This
corresponds to the first region in Figure 1.

With increasing global density, the local density in-
creases somewhere and the randomization probability may
be close to 0 or 1. Then the phase separation phenomenon

0 50 100 150 200 250 300 350 400
7.98

7.985

7.99

7.995

8

8.005
x 10

4

Space

Time step 

Fig. 2. The space-time pattern obtained from the DDR model
with vmax = 5, r = 7, L = 1×103 , ρ = 0.2. The plot apparently
shows the spontaneous formation of jams. (The horizontal di-
rection in space is 400 cells and time increases in the vertical
upward direction from 7.98×104 to 8×104 after removing the
transient effects.)

is presented in Figure 2, in which the corresponding den-
sity is 0.2 and the road length is set to be 400 in order
to make the diagram clearer. The gray region corresponds
to free flow and the dark region corresponds to the stand-
ing vehicles that cluster to form the jam. Some vehicles
cannot keep their desired velocity due to various reasons
including the large local density and frequently decelerate
at random. The fluctuations of velocity will cause some
vehicles to stop, thereby forming a jam. The free flows are
evidently separated by jams. This phenomenon is called
separation of phases, which usually makes the vehicles
slow down and the capacity drop. This phenomenon was
also appeared in the VDR model.

But sometimes the capacity does not drop much due
to the phase separation, just as that shown in Figure 1.
In order to have some further insight into the dynamics,
a fragment of a time pattern of the average speed of ve-
hicles at the chosen section is presented in Figure 3, in
which the global density is 0.2 and 0.32. It is found that
vehicles move almost at the same velocity within the time
period, although the velocity is smaller than that in the
free flow phase. This is the phenomenon of synchronized
flow. Meanwhile the average speed as ρ = 0.2 is larger
than that as ρ = 0.32. And this is in good agreement with
the real traffic. Then the existence of the second region in
Figure 1 should be ascribed to the presence of this syn-
chronized flow phase. The slight decrease of flow with the
increasing of the density is due to the jamming cluster. It
should be pointed out that the reproduced synchronized
flow with the DDR model is the result of combined action
of phase separation and density-dependent randomization.
And this is the main reason why there exists phenomenon
of phase separation but can not reproduce the synchro-
nized flow with the VDR model.
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Fig. 3. A fragment of a time pattern of the average speed of
vehicles at the chosen section obtained by the DDR model with
vmax = 5, r = 9; L = 400; ρ = 0.2 and ρ = 0.32.

It has been found when traffic flow transits from the
free flow phase to the synchronized flow phase( the F → S
transition, for short) with average speed decreasing, the
flow rate in the emerged synchronized flow can remain of
the same order of magnitude as in the initial free flow [20].
And this phenomenon coincide with the simulation result
in Figure 1.

The space-time diagram with r = 9 and ρ = 0.4 is
presented in Figure 4. It is found that there are a series
of jam forming on the road. That is to say, more vehicles
will stop forming successive jams and the synchronized
flow transits to a stop-and-go jam. With further increase
of density, the successive small jams transform into a wide
moving jam. The reason for this transition is the increas-
ing density and reduction of the outflow from a jam. As
the outflow from a jam is not very large, or the outflow
is smaller than the global flow, the small-width jams can
not dissolve and merge into a wide jam. Then the flow
presents a tendency of linear decrease with the increase of
vehicle density due to the wide moving jam, as the third
region shown in Figure 1.

It is important to note that with the increase of the
value of r, the range of density corresponding to the syn-
chronized flow phase becomes wider. This phenomenon is
linked to the fact that randomization probability decreases
with r more drastically with increasing density. That is to
say, the larger the value of r, the wider range of density
with small randomization is. Then the traffic will be in
the synchronized flow for wider range of density region
subsequently. Furthermore the metastable state exists in
the fundamental diagram of the DDR model that will be
discussed later.

At low densities, the slopes of the fundamental dia-
grams for all values of r are similar; indicating that vehi-
cles travel at near maximum speed in free flow phase and
the flow is independent of r. While in the jamming phase
the slope is also the same except the case of r = 1.0, in-
dicating a similar traffic behavior in this region and the
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Fig. 4. The space-time pattern obtained from the DDR model
with vmax = 5, r = 9, L = 400, ρ = 0.4. The plot apparently
shows the successive forming jams. The horizontal direction
in space is 400 cells and time increases in the vertical upward
direction from 7.98×104 to 8×104 after removing the transient
effects.

value of r = 1.0 is not suitable because of the lower value
of the maximum flow. By taking into account the appear-
ance of the synchronized flow phase, the numbers of r be-
tween 7 and 10 are recommended.

From the above analysis, we can find that three re-
gions in Figure 1 correspond to the three distinct dynamic
phases that are observed in real traffic: the free flow phase,
the synchronized flow phase and the jamming phase.

For comparison the fundamental diagram obtained
from the NaSch model with p = 0.25 is also presented
in Figure 1, which shows a direct transition from a free
flow regime to a jammed regime with increase of vehicle
density.

Besides the phenomena of synchronized flow and
metastable state, other two qualitative differences between
the DDR model and the NaSch model are found. First our
model leads to a higher value of maximum flow than that
obtained from the NaSch model by 40%, which is close to
the observed data (2500 vehicles/h*lane) [9]. Second, at
small density or free flow phase, the relationships between
density and flow in the two models are quite the same.
While at higher density or in the jamming phase, flow in
the DDR model is lower than that in the NaSch model
corresponding to the same value of density. Furthermore
in the congestion regime the flow decreases with density
linearly in the DDR model, while in the NaSch model the
flow-density curve is always convex in the large-density
region.

In the DDR model, when the condition dn ≥ 1 is satis-
fied, the randomization probability of vehicle is less than
0.25 as r > 2 according to equation (1). And in the low-
density region corresponding to the maximum flow, the
randomization probability in the DDR model is less than
that in the NaSch model (=0.25). Then the reduction of
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braking probability leads to the higher value of maximum
flow.

The reason for the second phenomenon is that at low
densities (ρ � 1) there are no slowly moving vehicles in
both models since the interactions between vehicles are
extremely rare. Then the randomization probability has
little influence on the total flow and the fundamental di-
agrams of the two models show the same property. On
the other hand, at larger density (1 − ρ � 1), the flow is
given by J(ρ) ≈ (1 − pn(ρn))(1 − ρ) in the DDR model
and J(ρ) ≈ (1 − p)(1 − ρ) in the NaSch model. Because
for densities close to ρ = 1, vehicles can only have veloc-
ities of vj = 0 or vj = 1. Thus pn(ρn) > p(=0.25) when
dn < 1 according to equation (1), and the flow in the DDR
model is smaller than that in the NaSch model. It can be
interpreted in another way that when the density of vehi-
cles is getting larger, vehicles will likely decelerate. This
will make the local density even larger and the traffic cir-
cumstances even worse. At that time the randomization
probability is certainly larger than that in the light traffic
condition. So the concept of density-dependent random-
ization is in a more realistic fashion than the constant
randomization. Besides there is some observational evi-
dence that in certain situations the shape of fundamental
diagrams differs from the convex form [10], such as those
in the slow-to-start models [10–12].

While in the VDR model, the randomization proba-
bilities are considered as velocity-dependent. The modi-
fication of randomization probability is in the following
form:

p(v) = p0, v = 0 (5)
p(v) = p, v > 0. (6)

Then the VDR model reproduced not only the phenomena
of metastability and hysteresis, but also phase separated
states at higher densities which are also presented in the
DDR model.

In order to confirm the existence of metastable state,
two basic strategies can be adopted. First, the density
of vehicles is changed adiabatically by adding or remov-
ing vehicles from the stationary state at a certain density.
The second way does not require changing the density.
Instead one starts from two different initial conditions, a
completely jammed state (megajam) and a homogeneous
state. The megajam state consists of one large compact
cluster of standing vehicles. While in the homogeneous
state, vehicles are distributed equidistantly.

Then we compare the dynamics for the DDR model
and the VDR model. Obviously the synchronized flow
phase exhibited in the DDR model is the most distinct fea-
ture compared with the VDR model. Except for this issue
the two models have some similar properties. For com-
parison, Figure 5 is the simulation result with our DDR
model for the case of vmax = 5, r = 9 using the second
strategy described above. The same has been done in Fig-
ure 6 which is the fundamental diagram of the VDR model
with vmax = 5, p0 = 0.75 and p = 1/64. The system size
used for simulations was L = 1000. It is shown that dis-
continuous reduction of traffic flow at the critical density
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Fig. 5. The fundamental diagrams in the DDR model (vmax =
5, r = 9; L = 1 × 103) obtained by using two different initial
conditions, namely, a completely jammed state and a homoge-
neous one. The metastable state occurs.
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Fig. 6. The fundamental diagrams of the VDR model
(vmax = 5, p0 = 0.75, p = 1/64, L = 1×103) obtained by using
two different initial conditions, namely, a completely jammed
state and a homogeneous one. (the left dotted line correspond-
ing to ρ1, and the right dotted line corresponding to ρ2).

ρc is observed in VDR model, where ρc = 1/(1+vmax). Be-
low the critical density, traffic flow reaches a maximum. In
certain density region a reverse-lambda shape in the fun-
damental diagram can be observed which is absent in the
NaSch model. The left leg of the reverse-lambda (with
higher flow) which corresponds to a homogeneous free-
flow state; there are almost no interactions between the
vehicles. On the other hand, the right leg of the reverse-
lambda, traffic flow begins to depart from a linear increase
at the density c1 and even decreases with a further in-
crease of vehicle density, where c1 represents the transi-
tion density from the freely moving phase to the jamming
phase in the case of the initial inhomogeneous condition.
This is called metastable state and the hysteresis phe-
nomena are always related to the existence of metastable
states in certain density region. This means that traffic
behaves differently in different density regimes and the
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uncongested and congested regimes are separated by gaps
or discontinuities which have been observed from the em-
pirical works [19–21]. Such situation is also described as
a two-capacity phenomenon. One capacity corresponds to
the tip of the left leg of the reverse-lambda, and the other
belongs to the tip of the right leg of the reverse-lambda
with a capacity drop from the former tip. And this ca-
pacity drop is believed to be caused by the formation of
queues on roads.

The metastable state also appears in the fundamental
diagram obtained from the DDR model (see Fig. 5). Un-
der a same global density, the local density for a certain
vehicle is usually different from the process of increas-
ing density to the process of decreasing density. And the
randomization is different due to the density-dependent
probability. Then flow can take one of the two values over
a certain interval of density, and metastability exhibits.
That is to say, the value of flow is dependent on the initial
state. While in the NaSch model, the metastability does
not appear due to the constant probability.

From Figure 5 it is found that the shape of the dia-
gram is a bit different from a reverse-lambda, i.e., there
is an extension to the left leg with a slight decrease flow.
And this extension part corresponds to the synchronized
flow. Along the left leg of the reverse-lambda, traffic flow
gradually increases with density. At a critical density, the
flow reaches its maximum corresponding to the tip of the
reverse-lambda. Then the synchronized flow appears with
the further increase of density in which the flow maintains
rather high values. When the density of traffic contin-
ues to increase, the discontinuous reduction of traffic flow
or metastable state occurs behind the synchronized flow
regime; and this is the unique characteristic that is differ-
ent from the other CA models including the VDR model.
It is found that the flow decreases along the right leg of the
reverse-lambda. The transition from the extension part of
the left leg to the right leg signifies the occurrence of a
heavy downstream queue. When the queue starts to dis-
charge, the data points moved up from the bottom of the
right leg and finally transits back to the left leg but can
not transit back to the extension part of the left leg (syn-
chronized flow). That is to say, the maximum flow value
and the synchronized flow phase prior to the influence of
the large queue can not be recovered. This demonstrates
the two-capacity phenomenon as observed in real traffic
flow data.

Conclusions

In this paper, a modified NaSch model with density-
dependent randomization has been proposed to simulate
microscopic traffic flow. The simulation results indicate
that this model can reproduce the complicated traffic be-
havior of real traffic, such as the phenomena of synchro-
nized flow, metastable state, hysteresis and phase sep-
arated states at high densities. Comparisons have been
made between this DDR model and the VDR model, also
between the DDR model and the NaSch model. And the
underlying mechanism has been analyzed. Furthermore

the fundamental diagram obtained by numerical simula-
tion shows that the capacity of the road approaches the
empirical data more closely compared with that from the
NaSch model. We should stress that our model is rather
powerful in dealing with realistic traffic flow phenomena,
because it takes into account the local density in the de-
termination of the randomization probability. And this
coincides with the real behavior of drivers. Especially the
reproduced synchronized flow is a biggest challenge for
traffic flow models which is absent in most CA models.
The results show that the presented model is more rea-
sonable and realistic.

Although in this paper the model is simulated in a
simple one-dimension topology with one type of vehicle,
it is possible to apply it to complex highway topologies in-
cluding multi-class traffic with different types of vehicles.
Moreover it is possible to apply it to stabilize the homo-
geneous branch of the fundamental diagram to maximize
the throughput.
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